

SBIRT IOWA Iowa Army National Guard

THE IOWA CONSORTIUM FOR SUBSTANCE ABUSE RESEARCH AND EVALUATION

Iowa Army National Guard Biannual Report April 2017

With Funds Provided By: Iowa Department of Public Health, Division of Behavioral Health; Substance Abuse and Mental Health Services Administration, Center for Substance Abuse Treatment, Grant Number TI023466

© 2017 The University of Iowa

SBIRT IOWA Army National Guard Biannual Report April 2017

Donna Lancianese, PhD Senior Program Evaluator

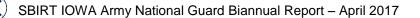
> Stephan Arndt, PhD Director

Citation of references related to this report is appreciated. Suggested Citation:

Lancianese, D. & Arndt, S. (April 2017). Screening, Brief Intervention and Referral to Treatment (SBIRT) Iowa Army National Guard Biannual Report. (Iowa Department of Public Health contract #5887YM50H). Iowa City, IA; Iowa Consortium for Substance Abuse Research and Evaluation. http://iconsortium.subst-abuse.uiowa.edu/

EXECUTIVE SUMMARY

Screening, Brief Intervention and Referral to Treatment (SBIRT) is a five-year grant (July 2012 – June 2017) awarded to the Iowa Department of Public Health and funded by the U.S. Department of Health and Human Services, Substance Abuse and Mental Health Services Administration (SAMHSA); Center for Substance Abuse Treatment. SBIRT IOWA uses a comprehensive, integrated, public health approach to incorporate universal screening into medical practice and within the Iowa Army National Guard (IAARNG) to identify, reduce, and prevent hazardous alcohol or drug use. The Iowa Consortium for Substance Abuse Research and Evaluation (Consortium) conducts the evaluation for the SBIRT IOWA project. This report includes information on 8,417 Soldiers in the IAARNG that have undergone SBIRT IOWA screening from October 25, 2012 through March 4, 2017.


Iowa National Guard members age 18 or older are prescreened with two questions about alcohol use and illegal drug use. Individuals receive full screenings if they indicate any of the following occurring within the past year:

- Men up to age 65 report drinking five or more drinks in one day or over 14 drinks in one week.
- Women of any age and men over age 65 report drinking four or more drinks in one day or over seven drinks in one week.
- Any illegal drug use or prescription use for non-medical reasons by men or women of any age.

SBIRT IOWA uses two instruments to conduct full screenings. The 10-question Alcohol Use Disorders Identification Test (AUDIT) screens for risky drinking and alcohol disorders. The Drug Abuse Screening Test (DAST-10) screens for hazardous use of illegal drugs and prescription misuse. Soldiers are also screened for mental health disorders using the Patient Health Questionnaire (PHQ), a screening and diagnostic tool used by health care professionals. The PHQ-9 is the depressive disorders module of the PHQ. This instrument is an optional screening tool for SBIRT providers. Substance use (AUDIT for alcohol or DAST-10 for drug use) and mental health (PHQ-9) screening scores were present in the majority of the screening records. This report addresses three questions:

- 1. Which Soldiers have higher screening scores (are there common characteristics at initial contact)?
- 2. How do the screening scores relate to PHQ-9 scores and depression symptoms?
- 3. Which Soldiers experience changes in substance use screening scores over time?

In addition to the screening instruments, SBIRT IOWA staff are required under the Government Performance and Results Act (GPRA) to gather demographic information. Data were extracted from the SBIRT screening and GPRA files for 16,016 records representing 8,417 Soldiers. Both inactive and active GPRA records were included to maximize the number of Soldiers with at least two substance use screenings. Due to smaller sample sizes for higher risk categories, AUDIT and DAST-10 scores were categorized into two categories Low Risk – when AUDIT scores are less than or equal to 7 and DAST-10 scores equal to zero, and Unhealthy Use for any higher AUDIT or DAST-10 score.

The following results were found for the three questions:

"Which Soldiers have higher screening scores (are there common characteristics at initial contact)?"

- Three Soldier characteristics have statistically significant relationships to Unhealthy Use: sex, age, and deployment to any combat zone. Being male, in the High Risk age group (between the ages of 20 and 25 years old) and having been deployed to any combat zone additively increased the chance of Unhealthy Use.
- Males in the High Risk age group (20-25 years old) who had been deployed had a high percentage of Unhealthy Use (13.7%), while females not in the High Risk age group who had not been deployed to any combat zone had a low percentage of Unhealthy Use (1.8%).

"How do the screening scores relate to PHQ-9 scores and depression symptoms?"

- PHQ-9 scores and depression severity levels were significantly related to Unhealthy Use in the select subgroup of Soldiers who received PHQ-9 screens in the SBIRT IOWA project. Increased depression severity dramatically elevated the chances of Unhealthy Use.
- Among the 3,633 Soldiers with a second PHQ-9 screening, Soldiers who were deployed to any combat zone were more likely to experience an increase in depressive symptoms from the first to second PHQ-9 screening.
- Unfortunately, there were differences between those who did receive the PHQ-9 and those who did not have recorded PHQ-9 screens. Thus, these results are based on a subset of Soldiers.

"Which Soldiers experience changes in substance use screening scores over time?"

- Use risk levels declined significantly between the initial and secondary SBIRT screens among the 4,895 Soldiers with two AUDIT and DAST-10 screenings. Male Soldiers, Soldiers in the High Risk age group (20 to 25 years of age), and deployed Soldiers had higher chances of experiencing a decrease in risk level between the first and second SBIRT screening.
- Among the select group of Soldiers with PHQ-9 scores and two AUDIT and DAST-10 screenings, PHQ-9 scores significantly predicted both moving from a higher risk category to a lower one and moving from a lower risk category to a higher one, even after accounting for Soldier's gender, ever deployed, and whether or not the Soldier was in the High Risk age category.

TABLE OF CONTENTS

Background1	
Screening/Assessment Tools and Scoring Key 1	
Data Extraction	
Table 1. Screening Tool Scoring Key 2	
Results	
Which Soldiers Have Higher AUDIT and DAST-10 Screening Scores?	
Table 2. Number and Percent of Soldiers with Scores at First Visit	
Table 3. Risk Level at First Screening	
Table 4. Unhealthy Use by Calendar Year 4	ŀ
Demographic Associations	
Table 5. Risk Level by Sex	
Table 6. Risk Level by Race/Ethnicity	
Figure 1. Soldier's Age and the Percentage of Higher Risk Use	
Deployment	
Table 7. Risk Level by Deployment	,
Multivariate Analyses Predicting Unhealthy Use	
Table 8. Odds Ratios Predicting Unhealthy Use	
Table 9. Risk Level by High Risk Characteristics	
Answer to: Which Soldiers have higher screening scores?	
How do the Screening Scores Relate to PHQ-9 Scores and Depression Symptoms?)
First PHQ-9 Scores and SBIRT Screening Scores	
Missing Initial PHQ-9 Scores and Soldier Demographics)
Present PHQ-9 Scores and Soldier Demographics)
Predicting SBIRT Screening Scores with PHQ-9 Scores, Depression Severity Level,	
and Soldier Demographics)
Table 11. Risk Level by First PHQ-9 Depression Screening Severity	
Second PHQ-9 Scores and Screening Scores	
Missing Second PHQ-9 Scores and Soldier Demographics	
Change in PHQ-9 Screening Scores and Severity from First to Second Screening and	
Soldier Demographics11	
Table 12. Depression Severity Levels at First and Second Screenings	
Answer to: How do the screening scores relate to PHQ-9 scores and depression	
symptoms?	3
Which Soldiers Experience Changes in Substance Use Screening Scores Over Time?13	
Table 13. Substance Use Risk Levels at First and Second Screenings	
Table 14. Initial and Second Screen Unhealthy Use14	
Answer to: Which Soldiers Experience Changes in Substance Use Screening Scores	
Over Time?	;
Conclusion	;

BACKGROUND

In July 2012, the Iowa Department of Public Health (IDPH) received a five-year grant from the Substance Abuse and Mental Health Services Administration (SAMHSA), Center for Substance Abuse Treatment (CSAT) to provide Screening, Brief Intervention and Referral to Treatment (SBIRT) services. SBIRT IOWA uses a comprehensive, integrated, public health approach to incorporate universal screening into medical practice and within the Iowa Army National Guard (IAARNG) to identify, reduce, and prevent hazardous alcohol or drug use. Specially trained substance use disorder treatment staff administers prescreening and screening for alcohol and other substance use to Soldiers affiliated with the IAARNG. Staff also conducts brief interventions, brief treatment sessions, and make referrals for substance use disorder treatment for Substance Abuse Research and Evaluation (Consortium) conducts the evaluation for the SBIRT IOWA project. The report presents data collected from October 25, 2012 through March 4, 2017.

Screening/Assessment Tools and Scoring Key

SBIRT IOWA staff at the IAARNG administer the 10-question Alcohol Use Disorders Identification Test (AUDIT) when a Soldier pre-screens positive for risky alcohol use and the Drug Abuse Screening Test (DAST-10) when a Soldier pre-screens positive for drug use. The Patient Health Questionnaire (PHQ) is a screening and diagnostic tool used by health care professionals for assessing mental health disorders. The PHQ-9 is the depressive disorders module of the PHQ, and is an optional screening tool for SBIRT providers. Table 1 on the following page provides the scoring ranges, associated risk levels, and recommended services for the AUDIT, DAST-10, and PHQ-9.

Data Extraction

Data for these analyses were drawn slightly differently than for SBIRT annual reports in order to maximize the number of Soldiers with multiple screenings. Individuals that underwent SBIRT screening at the Camp Dodge location were identified as Soldiers in the Iowa Army National Guard. Once they were identified as Soldiers, their GPRA IDs were used to capture information from substance use and depression screenings at other Federally Qualified Health Centers participating in SBIRT IOWA. Data from both the SBIRT screening files and GPRA interviews were used to obtain more complete demographic information. For this report, both inactive and active GPRA client records were utilized to assess changes in substance use and depression screenings across time and to maximize the number of records with DAST-10, AUDIT, and PHQ-9 scores.

Score	Risk Level	Recommended Service
AUDIT		
0 - 7	Low Risk or Negative	Encouragement and Education
8 – 15	Risky or Hazardous	Brief Intervention
16 – 19	High Risk or Harmful	Brief Treatment
20 - 40	High Risk	Referral to Treatment
DAST-10		
0	Low Risk	Encouragement and Education
1 – 2	Moderate Risk	Brief Intervention
3 – 5	Substantial Risk	Brief Treatment
6 – 10	Severe Risk	Referral to Treatment
PHQ-9 ¹		
0-4	Minimal Depression	Patient may not need depression treatment.
5 – 9	Mild Depression	Physician uses clinical judgment about treatment, based on
10 - 14	Moderate Depression	patient's duration of symptoms and functional impairment.
15 – 19	Moderately Severe Depression	Warrants treatment for depression, using antidepressant,
20 – 27	Severe Depression	psychotherapy and/or a combination of treatment.

Table 1. Screening Tool Scoring Key

RESULTS

Which Soldiers Have Higher AUDIT and DAST-10 Screening Scores?

A total of 8,417 Soldiers underwent SBIRT IOWA prescreening from October 25, 2012 through March 4, 2017. Table 2 on the following page displays the number and percentages of Soldiers with and without alcohol and drug prescreens, AUDIT, and DAST-10 scores. Of the 8,417 Soldiers who completed prescreening, nearly half (4,104 Soldiers, 48.8%) were administered the AUDIT. Fewer than 2% (95 Soldiers, 1.1%) were administered the DAST-10.

All Soldiers were asked about their alcohol and drug use using a two question pre-screening tool. Following a prescreening, a full screening using the AUDIT was then administered to male

¹ UMHS Depression Guideline, August 2011. PHQ-9 Questionnaire for Depression Scoring and Interpretation Guide. Retrieved from http://www.med.umich.edu/1info/FHP/practiceguides/depress/score.pdf

Soldiers who reported drinking five or more drinks in a day, and female Soldiers and Soldiers over 65 years who reported drinking four or more drinks in a day in the past year. Similarly, only Soldiers who reported illegal drug use and prescription drug misuse within the past year were administered the DAST-10. When a Soldier receives positives on both the alcohol and drug prescreening questions, then the AUDIT and DAST-10 are given.

	Score Present	Score Not Present	Percent with Scores
Prescreen – Alcohol	8,417	0	100.0%
Prescreen – Drugs	8,417	0	100.0%
AUDIT	4,104	4,313	48.8%
DAST-10	95	8,322	1.1%

Table 2. Number and Percent of Soldiers with Scores at First Visit

Table 3 presents the number and percent of Soldiers at each level of risk, determined by prescreen, AUDIT, and DAST-10 scores at the initial evaluation. We classified all Soldiers as Low Risk, Moderate Risk, Substantial Risk, or High Risk based on the prescreening questions, AUDIT and DAST-10 scores. If Soldiers received a higher score than Low Risk on *both* the AUDIT and DAST-10, then their highest risk category was used. The highest two levels of risk were rare: only 78 Soldiers (less than 1%) reported use that fell into the "Substantial Risk" or "Severe Risk" categories. Therefore, subsequent analyses focus on differences between the 7,965 Soldiers with Low Risk versus the 452 of Soldiers reporting Unhealthy Use (Moderate, Substantial, and Severe categories combined) of alcohol or drugs.

Table 3. Risk Level at First Screening

	n = 8,417	Percent	
Low Risk	7,965	94.6%	
Unhealthy Use	452	5.4%	
Moderate Risk	374	4.4%	
Substantial Risk	46	0.5%	
Severe Risk	32	0.4%	

Note: Moderate Risk, Substantial Risk, and Severe Risk percentages do not total the Unhealthy Use percentage due to rounding.

Table 4 on the following page shows the percentage of Soldiers who report Unhealthy Use by calendar year from October 25, 2012 to March 4, 2017. Note that since 2012 and 2017 include data for incomplete years, the number of Soldiers is smaller than for other years. Nonetheless, there has been a steady reduction in the percent of Soldiers reporting unhealthy use since the beginning of the project.² During the first full year of screening in 2013, 7.8% of Soldiers reported Unhealthy Use. However, this percentage decreased significantly to 5.3% in 2014, 3.4% in 2015, and 2% in 2016. While there have only been two months of data collection for 2017, the percent of unhealthy use is lower than 2016.

² Jonckheere-Terpstra Test z = -9.987, p <0.0001

	Total Number Screened	% Unhealthy Use
2012 (October – December)	223	11.7%
2013	3,088	7.8%
2014	1,645	5.3%
2015	2,064	3.4%
2016 (January – September)	1,194	2.0%
2017 (January – March)	203	1.5%
All Years	8,417	5.4%

Table 4. Unhealthy Use by Calendar Year

Jonckheere-Terpstra Test z = -9.987, p < 0.0001

Demographic Associations

Tables 5 and 6 present risk levels based on screening scores by demographic characteristics. The tables provide percentages; statistical significance test values appear below the tables. Table 5 shows risk level by sex. Males were more than twice as likely as females to be in the Unhealthy Use group (5.8% and 2.5% respectively).³

Table 5. Risk Level by Sex

	Low Risk (n = 7,965)	Unhealthy Use (n = 452)
Sex		
Males	94.2%	5.8%
Females	97.5%	2.5%

 $\chi^2 = 22.85$, df = 1, p < 0.0001

To minimize missing data, Table 6 on the following page uses information about Soldiers' race and ethnicity from both the SBIRT and GPRA records. These personal characteristics are not mutually exclusive and a Soldier can list more than one race or ethnic group. Soldiers who identified as American Indian had a significant difference in risk level (Low Risk versus Unhealthy Use).⁴ Soldiers reporting African American for their race were less likely to be in the Unhealthy Use category compared to Soldiers in other racial and ethnic categories.⁵

 $^{^{3}\}chi^{2} = 22.85$, df = 1, p < 0.0001

 $^{4 \}chi^2 = 5.17$, df = 1, p < 0.05

 $^{5 \}chi^2 = 4.02$, df = 1, p < 0.05

Table 6. Risk Level by Race/Ethnicity

	Low Risk (n = 7,950) °	Unhealthy Use (n = 451)ª
Race or Ethnicity		
White	94.6%	5.4%
Black/African American ^b	97.7%	2.3%
Asian	94.7%	5.3%
Hawaiian or Pacific Islander	100.0%	0.0%
American Indian ^b	86.1%	13.9%
Hispanic/Latino	94.4%	5.6%

^a Fifteen Soldiers in the Low Risk and one Soldier in the Unhealthy Use categories were missing race and ethnicity data.

^b χ^2 = 4.02, df = 1, p < 0.05 ^c χ^2 = 5.17, df = 1, p < 0.05

Ages of Soldiers in this sample range from 18 to 63 years with a median age of 25 years. Figure 1 on the following page shows the percentage of Soldiers reporting Unhealthy Use by age. The size (area) of the circles represents the number of Soldiers at each year of age when screened. There is a highly significant nonlinear relationship between age and Unhealthy Use.⁶ The peak Unhealthy Use occurs from the age of 20 to 25. This is especially pertinent since over one-third (36.2%) of the Soldiers in this sample are between the ages of 20 and 25. This combination creates a situation where the largest age group has the highest risk, resulting in a large number of affected Soldiers. For all of the following analyses, Soldiers between 20 to 25 years of age are classified in the High Risk age group.

On average, 6.2% of Soldiers age 33 and under report drug and alcohol use that places them in the Unhealthy Use category. For Soldiers between age 20 and 25, Unhealthy Use was 7% or higher. Unhealthy Use decreased steadily after age 33. However, the average percent of Soldiers over the age of 33 reporting Unhealthy Use is 1.9%.

There is one outlying high percentage at age 42, however, the sample sizes are smaller and the estimates are unstable. There also may be an increasing trend beginning around age 44 to the early 50s. In this sample, Soldiers older than 52 do not report Unhealthy Use.

⁶ -Log Likelihood χ^2 = 56.71, df = 3, p<.0001 (comparing a linear logistic regression to one containing linear, quadratic, cubic and quantic terms)

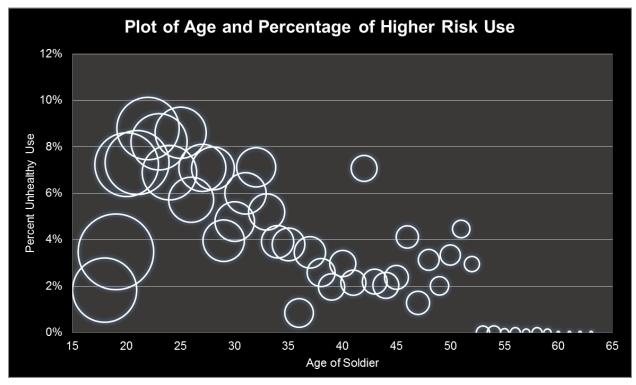


Figure 1. Soldier's Age and the Percentage of Higher Risk Use

Deployment

Deployment history was recorded for all but one of the Soldiers in the sample. Table 7 on the following page displays the numbers and percent of Soldiers in the Low Risk and Unhealthy Use categories, no deployment versus any deployment, multiple deployments, and location of deployment. Since Soldiers can be deployed to more than one location, the number of deployments by location exceeds the total number of Soldiers in the sample.

Almost half of the Soldiers (43.1%) have been deployed, and 15.3% of Soldiers reported being deployed to more than one location. The majority of Soldiers (93.8%) who have been deployed to a combat zone have been deployed to Iraq or Afghanistan. Due to this overwhelming majority, results will not distinguish between those deployed to Iraq or Afghanistan from those who deployed to any other combat zones. Tests of differences between specific deployment locations and Unhealthy Use yielded no statistically significant relationships. Thus, analyses involving deployment examine differences between Soldiers who have been deployed to any location and those who have never been deployed.

There is a statistically significant but small relationship between deployment and Unhealthy Use.⁷ Nearly 6.5% of Soldiers who have been deployed to any combat zone reported Unhealthy Use compared to 4.6% of Soldiers who have never been deployed.

 $^{^{7}\}chi^{2}$ = 14.61, df = 1, p < 0.001

Deployments also vary considerably by age and sex, both of which are related to Unhealthy Use. Further analyses discussed in the next section attempt to assess how these other factors are independently associated with Unhealthy Use.

	Number	Low Risk (n = 7,964)ª	Unhealthy Use (n = 452)
Never Deployed	4,788	95.4%	4.6%
Deployed	3,628	93.6%	6.4%
Location of Deployment			
Iraq/Afghanistan	3,402	93.4%	6.6%
Persian Gulf	261	95.0%	5.0%
Vietnam/SE Asia	25	96.0%	4.0%
Korea	23	95.7%	4.3%
Not Listed	546	95.2%	4.8%
More Than One Location	556	94.8%	5.2%

Table 7. Risk Level by Deployment

^a One Soldier's deployment status was missing.

Note: The World War II category was omitted since the birthdates of the ten Soldiers who reported serving in World War II indicated that they had not been born before 1945. Percentages may not sum to 100% due to rounding.

Multivariate Analyses Predicting Unhealthy Use

More sophisticated analyses (logistic regression) predicted a Soldier's likelihood of Unhealthy Use based on gender, race, age, and deployment. Results of multivariate logistic regression using age, sex, and deployment to predict Unhealthy Use were highly significant.⁸ Being a male, in the High Risk age group, and deployed to any combat zone all independently contributed to being in the Unhealthy Use group. The odds ratios (OR) appear in Table 8.

Being a male more than doubles the odds of being in the Unhealthy Use group (OR = 2.31), as does being age 20 to 25 years old (OR = 2.58). Deployment to any combat location increases the chance by more than one and a half times (OR = 1.87). These effects appear to be additive.⁹ This means the chance of being in the Unhealthy Use group increases for each risk factor present in the Soldier (e.g. male, age 20-25, deployed to any combat zone). However, these characteristics do not combine to create a synergistic increase or decrease in Unhealthy Use. For example, the effect of being in the High Risk age group on Unhealthy Use is no different for women than as it is for men. This is evident by the lack of any significant two-way interactions between demographic risk factors.

⁸ Likelihood ratio χ^2 = 120.18, df = 3, p < 0.0001

⁹ All tests of 2-way interactions were not significant.

	Odds Ratio	95% Confidence Interval
Male	2.31	1.58 - 3.38
High Risk Age Group (20 – 25 years old)	2.58	2.11 - 3.17
Deployed to Any Combat Zone	1.87	1.52 - 2.30

Table 8. Odds Ratios Predicting Unhealthy Use

Finally, Table 9 shows the percentages of Soldiers reporting Unhealthy Use categorized by sex, age group, and whether or not they were deployed to any combat zone. Some of the individual rows represent smaller numbers of Soldiers. For example, only 68 female Soldiers in the High Risk age group were deployed to a combat zone. The small subgroups will be reflected by broad 95% confidence intervals, such as, the group of females in the High Risk age group who were deployed to a combat zone. **Shaded cells in Table 9 indicate lower risk characteristics.**

Sex	High Risk Age Group	Deployment to any Combat Zone	Percent Unhealthy Use	95% Confidence Interval
Male	Yes	Yes	13.7%	11.1% - 16.7%
Male	Yes	No	7.0%	5.9% - 8.2%
Male	No	Yes	5.3%	4.4% - 6.2%
Male	No	No	3.0%	2.3% - 3.9%
Female	Yes	Yes	2.9%	0.4% - 10.2%
Female	Yes	No	3.5%	2.0% - 5.7%
Female	No	Yes	2.0%	0.6% - 4.6%
Female	No	No	1.8%	0.8% - 3.4%

Table 9. Risk Level by High Risk Characteristics

Answer to: Which Soldiers have higher screening scores?

Higher scores on the substance screening questions can be identified with some success. Male Soldiers between 20 and 25 years of age deployed to any combat location have dramatically higher levels of Unhealthy Use than other Soldiers. Sex (male), age (20 - 25 years), and deployment to a combat zone all additively contribute to this high rate. Thus males age 20-25 who have been deployed to any combat zone represent the highest risk for unhealthy substance use, while female Soldiers younger than 20 and older than 25 who have never been deployed represent the lowest risk of Unhealthy Use.

How do the Screening Scores Relate to PHQ-9 Scores and Depression Symptoms?

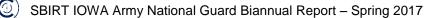
Approximately nine in ten (92.0%) of the 8,417 Soldiers who underwent alcohol and drug prescreening in the SBIRT-IOWA project between October 25, 2012 and March 4, 2017 were also screened for depressive symptoms with the PHQ-9. Furthermore, 3,633 Soldiers underwent PHQ-9 screening twice within this time frame. Table 10 displays the number of Soldiers with present and missing PHQ-9 scores by risk level, sex, age, and ever deployed.

	PHQ-9 Scores Missing	First PHQ-9 Score Present at Initial Screening	Second PHQ-9 Score Present at Second Screening
All	674	7,743	3,633
Risk Level			
Low Risk	600	7,365	3,472
Unhealthy Use	74	378	161
Sex			
Female	88	1,115	466
Male	586	6,628	3,167
Age			
Not High Risk Age	381	4,987	2,312
High Risk Age	293	2,756	1,321
Deployment			
Never Deployed	311	4,477	2,166
Deployed	362	3,266	1,467

Table 10. Risk Level by High Risk Characteristics

Note: Deployment totals do not add up to the totals in the "all" row due to missing deployment data for one Soldier.

First PHQ-9 Scores and SBIRT Screening Scores


Missing Initial PHQ-9 Scores and Soldier Demographics

Soldiers with a missing PHQ-9 score were more likely to have a screening score that indicated Unhealthy Use.¹⁰ Almost 11% of Soldiers with a missing PHQ-9 score in SBIRT data reported Unhealthy Use; however, 4.9% of Soldiers who had a PHQ-9 score reported Unhealthy Use.

Whether or not a Soldier's PHQ-9 score was present also depended on his or her age, deployment, and race. Significantly more Soldiers in the High Risk age group were missing a PHQ-9 score (9.6%) compared to other ages (7.1).¹¹ Similarly, more Soldiers who were deployed to any combat zone had missing PHQ-9 entries (10.0%) compared to those not deployed (6.5%).¹² Finally, significantly more White Soldiers were missing PHQ-9 scores (8.2%) than non-white Soldiers (3.1%).¹³ Since those with a PHQ-9 score were less likely to report Unhealthy Use, less likely to be between the ages of 20 and 25, more likely to be

 $^{12}\chi^2 = 34.02$, df = 1, p < 0.001

 $^{^{13}\}chi^2 = 12.42$, df = 1, p < 0.001

¹⁰ χ^2 = 45.36, df = 1, p < 0.001

¹¹ χ^2 = 16.66, df = 1, p < 0.001

deployed to a combat zone, and non-white bias the sample of PHQ-9 scores. Therefore, the following analyses do not reflect all Soldiers screened in SBIRT.

The evaluators held discussions with the SBIRT IOWA Steering Committee and IAARNG staff to explore possible sources of this bias. There was no selective bias inherent in the IAARNG SBIRT screening process and speculations that the PHQ-9 screening may have been inadvertently omitted at some annual Periodic Health Assessment events proved to be unfounded. In recent years, the PHQ-9 score is recorded in SBIRT more consistently. In 2013, 18.8% of intakes were missing the PHQ-9, while in 2014 and 2015 the percentages of missing PHQ-9 data were 1.8% and 0.6%, respectively. In 2016, only 0.8% of intakes were missing PHQ-9 screening scores and from January 1, 2017 through March 4, 2017, 0.5% of Soldiers were missing PHQ-9 screening scores.

Present PHQ-9 Scores and Soldier Demographics

PHQ-9 scores were coded with the following levels of depression severity: None (0 - 4), Mild (5 – 9), Moderate (10 - 14), Moderately Severe (15 - 19), and Severe (20 - 27). Both PHQ-9 scores and the depression severity coding were used in analyses. The majority of the Soldiers (94.4%) had a severity of "None" for depression.

Neither PHQ-9 scores nor the depression severity level was associated with the Soldier's sex.¹⁴ Similarly, being in the High Risk age group was not associated with PHQ-9 scores or severity.¹⁵ Deployment to any combat zone yielded mixed results. Both the PHQ-9 *scores* and PHQ-9 *severity* were significantly associated with deployment to any combat zone.¹⁶ Whereas 25 of the 3,266 deployed soldiers with PHQ-9 scores (0.76%) were Moderately Severe or Severe, only 22 of those 4,477 not deployed (0.67%) reported that degree of depression.

Predicting SBIRT Screening Scores with PHQ-9 Scores, Depression Severity Level, and Soldier Demographics

Within this subset of Soldiers with PHQ-9 scores, PHQ-9 severity level was a good indicator of Unhealthy Use.¹⁷ Table 11 shows the relationship of PHQ-9 depression severity and being in the Low Risk and Unhealthy Use groups. Note the lower sample size in Table 11 compared to all other analyses is due to several Soldiers with missing PHQ-9 scores.

Among Soldiers with valid PHQ-9 scores, the percentage of Soldiers who report Unhealthy Use increases as depressive symptoms increase. Less than one in twenty (4.4%) Soldiers who reported no depressive symptoms also reported drug or alcohol use that is considered Unhealthy Use. However, of the 280 Soldiers who indicated mild depressive symptoms, nearly one in ten (8.9%) also reported potentially risky use of drugs and alcohol.

¹⁴ Mann-Whitney z = -.54, p = 0.586; Jonckheere-Terpstra Test z = -1.959, p = 0.0501

¹⁵ Mann-Whitney z = -0.28, p = 0.783; Jonckheere-Terpstra Test z = 0.472, p = 0.637

¹⁶ Mann-Whitney z = 2.17, p < 0.05; Jonckheere-Terpstra Test z = 3.782, p < 0.001

 $^{^{\}rm 17}$ Jonckheere-Terpstra Test, z = 8.44, p < 0.0001

Depression Severity Level	Number	Low Risk (n = 7,365)	Unhealthy Use (n = 378)
None	7,312	95.6%	4.4%
Mild	280	91.1%	8.9%
Moderate	104	81.7%	18.3%
Moderately Severe	35	77.1%	22.9%
Severe	12	58.3%	41.7%

Table 11. Risk Level by First PHQ-9 Depression Screening Severity

Jonckheere-Terpstra Test, z = 8.44, p < 0.0001

Follow-up analyses using logistic regression and including the Soldier's sex, age group, ever deployed, PHQ-9 score, and depression severity continued to support the PHQ-9 as a predictor of Unhealthy Use among those select Soldiers who had PHQ-9 scores. However, since the Soldier's age and ever deployed significantly influenced whether or not the Soldier had a valid PHQ-9 score, interpretation of these results are not discussed in detail.

Second PHQ-9 Scores and Screening Scores

Missing Second PHQ-9 Scores and Soldier Demographics

Nearly half (43.2%) of Soldiers had at least two PHQ-9 screenings between October 25, 2012 and March 4, 2017. However, similar to the first PHQ-9 score, there were biases present. Whether or not a Soldier had a second PHQ-9 screening score was significantly associated with gender, and whether they wereever deployed.

Soldiers who reported Unhealthy Use during the second screening, as evidenced by their *second* full screen from the AUDIT or DAST-10 scores, were less likely to have a second PHQ-9 screening (56.3%) than Soldiers reporting Low Risk use with a second screening (75.2%).¹⁸ A similar pattern was found between Soldiers first full screen from the AUDIT or DAST-10 scores and their second PHQ-9 screening.¹⁹ Soldiers who reported unhealthy use (35.6%) at their first screening were less likely to have a second PHQ-9 screening than Soldiers in the low risk group (at first screening) with second PHQ-9 score (43.6%). Female Soldiers were less likely to have a second PHQ-9 screening (38.7%) than male Soldiers (43.9%).²⁰ Soldiers who had been deployed to any combat zone had fewer PHQ-9 screenings (40.4%) than Soldiers who had never been deployed to any combat zone (45.2%).²¹

Change in PHQ-9 Screening Scores and Severity from First to Second Screening and Soldier Demographics

Table 12 on the following page shows Soldiers' second PHQ-9 screening risk level percentages severity level based on their initial PHQ-9 screen. Note that the sample size for this table is smaller and represents the 3,633 Soldiers with more than one PHQ-9 screening. Soldiers'

¹⁸ χ^2 = 45.58, df = 1, p < 0.001

¹⁹ χ^2 = 11.08, df = 1, p < 0.01

 $^{^{20}\}chi^2 = 11.21$, df = 1, p < 0.01

 $^{^{21}\}chi^2 = 19.41 \text{ df}=1, p<0.001$

PHQ-9 severity level at the first screening are displayed in the rows of the table and Soldiers' PHQ-9 severity level at the second screening are presented in the columns of the table.

This table shows that a large majority of Soldiers did not display any depressive symptoms at the first or second screening: 93.7% of the 3,633 Soldiers who did not have any depressive symptoms on their first PHQ-9 screening did not have any depressive symptoms on their second PHQ-9 screening. The remaining 6.3% of Soldiers who did not have any depressive symptoms at the first screening reported depressive symptoms at the second screening.

When these data are collapsed to assess what percentage of Soldiers experienced no change, an increase, or a decrease in depressive symptoms from the first to second screening, nine out of ten Soldiers (90.4%) with a second PHQ-9 screening had the same level of severity at both screenings. One hundred ten Soldiers (3.0%) reported a higher PHQ-9 severity level on the first screening than on the second screening suggesting a decrease in depressive symptoms. Finally, 6.6% of Soldiers moved from a lower level of severity on their first screening to a higher level on the second screening, suggesting an increase in depressive symptoms. This suggests a tendency for Soldiers to report more depressive symptoms during their second assessment.²² Among Soldiers who experienced a decrease in depressive symptoms, 80 Soldiers (71.4%) experienced mild symptoms on the first screening and no symptoms on the second screening. Of those who experienced an increase in depressive symptoms, 148 Soldiers (4.3%) went from having no symptoms to having mild symptoms.

There was a significant relationship between soldier's deployment and PHQ-9 change.²³ Soldiers who were deployed were more likely to experience an increase in depressive symptoms from the first to second screening (8.5%) compared to Soldiers who were never deployed (5.2%).

First Screen		Second Screen Risk Level					
Risk Level	Number	None	Mild	Moderate	Moderately Severe	Severe	
None	3,479	93.7%	4.3%	1.4%	0.4%	0.2%	
Mild	112	71.4%	17.0%	8.0%	1.8%	1.8%	
Moderate	34	58.8%	11.8%	11.8%	14.7%	2.9%	
Moderately Severe	6	50.0%	16.7%	16.7%	0.0%	16.7%	
Severe	2	0.0%	50.0%	0.0%	0.0%	50.0%	

 Table 12. Depression Severity Levels at First and Second Screenings

Bowker test for symmetry χ^2 = 53.98, df = 10, p < 0.0001

 22 Bowker test for symmetry χ^2 = 53.98, df = 10, p < 0.0001

²³ χ²=17.23, df=2, p < .001

Answer to: How do the screening scores relate to PHQ-9 scores and depression symptoms?

PHQ-9 scores and depression symptoms appear to have a strong influence for increasing the chances of Unhealthy Use in this subgroup of Soldiers with PHQ-9 scores. The effect of depressive symptom severity is large and apparent, even in the Mild risk group. Unfortunately, these results are based on a selective subgroup. Soldiers without PHQ-9 scores had higher levels of Unhealthy Use than those analyzed.

This bias persisted among Soldiers with a second PHQ-9 screening. However, among this subset of Soldiers with two PHQ-9 scores, there is a significant increase in depressive symptoms between screenings. Furthermore, within this sample, Soldiers who were deployed to any combat zone were more likely to experience an increase in depressive symptoms.

Which Soldiers Experience Changes in Substance Use Screening Scores Over Time?

Of the 8,417 Soldiers who underwent SBIRT IOWA prescreening between October 25, 2012 and March 4, 2017, 4,020 (58.2%) were screened twice. The median number of days between the two screenings is 684 days (approximately 22 months).

Table 13 shows the Soldiers' second substance use risk level percentages by their risk level at the initial screening. For example, of Soldiers who initially screened as Low Risk, 95.7% again screened in the Low Risk level on their second screen. Of these Soldiers initially scoring as Low Risk, 3.3% moved into the Moderate Risk level. More importantly, of those who initially screened in the Moderate Risk level, 81.0% moved down into the Low Risk level. Regardless of what the Soldiers' first screening indicated, 91.1% of Soldiers did not have a change in risk level from the first to second screening, while 4.5% of Soldiers moved to a lower risk level and 4.4% moved into a higher risk level. There is a statistically significant reduction in risk levels between the two screenings.²⁴

First Screen		Second Screen Risk Level				
Risk Level	Number	Low Risk	Moderate Risk	Substantial Risk	Severe Risk	
Low Risk	4,622	95.7%	3.3%	0.8%	0.2%	
Moderate Risk	232	81.0%	14.7%	3.0%	1.3%	
Substantial Risk	24	62.5%	12.5%	8.3%	16.7%	
Severe Risk	17	76.5%	5.9%	11.8%	5.9%	

Table 13.	Substance Use Risk Levels at First and Second Screenings

Bowker Test for symmetry $\chi^2 = 15.04$, df = 6, p < 0.05 Note: Percentages not totaling 100% are due to rounding.

Using the definition of Unhealthy Use (Moderate, Substantial, and Severe categories combined), the percentages in Table 13 show a similar pattern. While 4.3% of Soldiers who initially screened in the Low Risk group increased their use to Unhealthy Use, 79.1% of those

 $^{^{24}}$ Bowker test for symmetry χ^2 = 15.04, df = 6, p < 0.05

who initially were in the Unhealthy Use group reduced their use to Low Risk. This reduction in Unhealthy Use is observed, but not statistically significant.²⁵ The disparity in results may be due to the drastic reduction in risk, particularly for those in the Substantial and Severe Risk groups.

	Second Screen		
First Screen	Low Risk	Unhealthy Use	
Low Risk	95.7%	4.3%	
Unhealthy Use	79.1%	20.9%	

Table 14. Initial and Second Screen Unhealthy Use

McNemar's test $\chi^2 = 0.70$, df = 1, exact p = 0.4322

When separating changes in risk level between no change, a decrease in risk level, and an increase in risk level from the first to second screening, a few significant demographic patterns emerge. Male soldiers and soldiers who are age 20 to 25 were more likely to experience a change in risk level between the first and second screening compared to female Soldiers and Soldiers not in the "High Risk age" category. There were no significant differences among Soldiers who have or have not been deployed to a combat zone for those experiencing no change or a decrease in risk between the first and second screening. Soldiers who were not deployed (5.2%) were more likely to increase their risk compared to deployed soldiers (3.3%) from the first to the second screening.²⁶

A higher percentage of females had the same level of severity at both screenings (94.5%) than males (90.6%).²⁷ More males experienced a decrease in risky alcohol and drug use (4.8%) than females (2.5%).²⁸

Similar findings were also present for the High Risk age group. A significantly larger percentage of Soldiers between the ages of 20 and 25 experienced decrease in Unhealthy Use from the first to second screening compared to Soldiers outside of this age group.²⁹ Ninety-two and half percent of Soldiers younger than 20 and older than 25 had the same risk level on both screenings compared to 88.8% of Soldiers in the High Risk age group.³⁰

More advanced statistical procedures (multinomial logistic regression) suggest that male Soldiers, Soldiers in the High Risk age group, and being deployed had higher chances of moving from a higher level of risk to a lower level of risk between screenings relative to no change in risk level compared to female and non-deployed Soldiers outside of the High Risk age group.³¹ However, age was not associated with a significant change in the risk of experiencing a movement from a lower risk level to a higher risk level between screenings.

Additional multinomial logistic regressions were conducted to assess the effect of PHQ-9 scores on changes in substance use screening scores over time. An increasing initial PHQ-9 score was also associated with an increase in the probability of a Soldier experiencing a change in

- $r^{29} \chi^2 = 15.32$, df=1, p<0.001
- $^{30}\tilde{\chi}^2 = 19.50$, df = 1, p < 0.001

²⁵ McNemar's test $\gamma^2 = 0.70$, df = 1, exact p = 0.4322

 $^{^{26}\}chi^2 = 10.36$, df = 1, p < 0.01

 $[\]chi^{27} \chi^2 = 10.6$, df = 1, p < 0.01 $\chi^2 \chi^2 = 7.04$, df = 1, p < 0.01

³¹ Multinomial Regression, Log Likelihood χ^2 = 51.11, df=6, p < .0001

substance use risk level between the first and second screening, even after accounting for the Soldier's sex, ever deployed, and whether or not the Soldier was in the High Risk age category.³² However, among Soldiers with second PHQ-9 scores, an increase in the second PHQ-9 score was not associated with an increase in the probability of moving from a higher risk level to a lower risk level, but was significantly associated with the probability of moving from a low risk screening to a higher risk screening.³³

Answer to: Which Soldiers Experience Changes in Substance Use Screening Scores Over Time?

Among the 4,895 Soldiers with two screening scores, 91.1% experienced no change in risk level between the first and second screening. Most Soldiers either maintained their Low Risk status or reduced their risk level by the time of the second SBIRT screening. Those in the Moderate Risk category initially showed the most marked change, with 81% becoming Low Risk at the second screening.

However, among the remaining 8.9% who did experience a change in risk level between the first and second screening, there was an indication that male Soldiers and Soldiers between the ages of 20 and 25 were more likely to experience a decrease in risk level between the first and second screening. Furthermore, among the 4,840 Soldiers who had two SBIRT screenings and initial PHQ-9 screening, an increase in PHQ-9 scores significantly increased the odds of experiencing a change between the first and second SBIRT screening scores.

CONCLUSION

Of the 8,417 Soldiers who underwent SBIRT IOWA screening since the beginning of the project, 4,985 were screened at least twice. This report addressed three questions:

- 1. Which Soldiers have higher screening scores (are there common characteristics at initial contact)?
- 2. How do the screening scores relate to PHQ-9 scores and depression symptoms?
- 3. Which soldiers experience changes in substance use screening scores over time?

There was some success predicting higher screening scores based on sex, age, and deployment to Iraq/Afghanistan. Being male, between the ages of 20 and 25 years old, and having been deployed to Iraq/Afghanistan additively increased the chances of Unhealthy Use. Males in the High Risk age group who had been deployed had a high percentage of Unhealthy Use, 13.7%. In contrast, females not in the High Risk age group who had not been deployed to any combat zone had a low percentage of Unhealthy Use, 1.8%. Soldiers who identified as American Indian had a significant difference in risk level compared to other racial and ethnic groups (American Indian: 13.9% versus all other groups: 5.33%). Thus, specialized programs further aimed to reinforce SBIRT efforts and reduce unhealthy drinking might target those in the riskiest groups. Interestingly, the percent of Soldiers who reported Unhealthy Use significantly decreases for each calendar year of SBIRT screening between October 25, 2012 and March 4, 2017.

³² Multinomial Regression, Log Likelihood χ^2 = 88.47, df=8, p < .0001; relative risk ratio = 1.130, p < 0.001

³³ Multinomial Regression, Log Likelihood χ^2 = 61.41, df=8, p < .0001; relative risk ratio = 1.045, p = 0.083

PHQ-9 scores and depression severity levels were strongly related to Unhealthy Use in the subgroup of Soldiers who received PHQ-9 screens in the SBIRT project. Unfortunately, there were differences between those who did receive and those who did not receive a PHQ-9 screen in terms of age, ever deployed, and Unhealthy Use. Thus, these results came from a selective subset of Soldiers. Additionally, female Soldiers and Soldiers who have been deployed to a combat zone were less likely to have a second PHQ-9 screening score. Among this select group of Soldiers with two screening scores, Soldiers who had been deployed to any combat zone were more likely to experience an increase in depressive symptoms.

Changes in AUDIT and DAST-10 scores and Unhealthy Use were evident in these data. Use risk levels declined significantly between the initial and subsequent BIRT screens. The decline was particularly noticeable in the Moderate Risk use category, where over 80% of Soldiers remitted to Low Risk. Further analyses indicate that male Soldiers, Soldiers in the High Risk age group (between the ages of 20 and 25), and those who had been deployed had higher probability of experiencing a decrease in risk level between the first and second SBIRT screening. However, age was not associated with an increase in the probability of experiencing a change from a lower level of risk to a higher level of risk between screenings. Among the select group of soldiers with PHQ-9 scores and two alcohol and drug prescreenings, an increase in the PHQ-9 score significantly predicted both an increase and decrease in screening scores, even after accounting for Soldier's gender, ever deployed, and whether or not the Soldier was in the High Risk age category.